十九世紀下半葉,德國數(shù)學家康托爾創(chuàng)立了著名的集合論,在集合論剛產(chǎn)生時,曾遭到許多人的猛烈攻擊。但不久這一開創(chuàng)性成果就為廣大數(shù)學家所接受了,并且獲得廣泛而高度的贊譽。數(shù)學家們發(fā)現(xiàn),從自然數(shù)與康托爾集合論出發(fā)可建立起整個數(shù)學大廈。因而集合論成為現(xiàn)代數(shù)學的基石。“一切數(shù)學成果可建立在集合論基礎上”這一發(fā)現(xiàn)使數(shù)學家們?yōu)橹兆怼?/p>
1903年,一個震驚數(shù)學界的消息傳出:集合論是有漏洞的。這就是英國數(shù)學家羅素提出的著名的羅素悖論。羅素的這條悖論使集合論產(chǎn)生了危機。它非常淺顯易懂,而且所涉及的只是集合論中最基本的東西。所以,羅素悖論一提出就在當時的數(shù)學界與邏輯學界內引起了極大震動。
德國的著名邏輯學家弗雷格在他的關于集合的基礎理論完稿付印時,收到了羅素關于這一悖論的信。他立刻發(fā)現(xiàn),自己忙了很久得出的一系列結果卻被這條悖論攪得一團糟。他只能在自己著作的末尾寫道:“一個科學家所碰到的最倒霉的事,莫過于是在他的工作即將完成時卻發(fā)現(xiàn)所干的工作的基礎崩潰了。”
公理化集合論的建立,成功排除了集合論中出現(xiàn)的悖論,從而比較圓滿地解決了第三次數(shù)學危機。但在另一方面,羅素悖論對數(shù)學而言有著更為深刻的影響。它使得數(shù)學基礎問題第一次以最迫切的需要的姿態(tài)擺到數(shù)學家面前,導致了數(shù)學家對數(shù)學基礎的研究。而這方面的進一步發(fā)展又極其深刻地影響了整個數(shù)學。如圍繞著數(shù)學基礎之爭,形成了現(xiàn)代數(shù)學史上著名的三大數(shù)學流派,而各派的工作又都促進了數(shù)學的大發(fā)展。