很多人都非常的害怕數(shù)學(xué),覺得數(shù)學(xué)很難,但數(shù)學(xué)早就已經(jīng)融入了我們的生活,我們生活各處都體現(xiàn)著數(shù)學(xué)。數(shù)學(xué)還在不斷的發(fā)展,但也有難以解決的難題,下面探秘志小編就為大家來揭秘一下世界七大數(shù)學(xué)難題,每一道題解答出來都可以獲得百萬美金!
1、龐加萊猜想
2、NP完全問題
3、楊-米爾斯存在性和質(zhì)量缺口
4、霍奇猜想
5、納衛(wèi)爾-斯托可方程的存在性與光滑性
6、BSD猜想
7、黎曼假設(shè)
1、龐加萊猜想
如果我們伸縮圍繞一個蘋果表面的橡皮帶,那么我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點。另一方面,如果我們想象同樣的橡皮帶以適當(dāng)?shù)姆较虮簧炜s在一個輪胎面上,那么不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。我們說,蘋果表面是“單連通的”,而輪胎面不是。大約在一百年以前,龐加萊已經(jīng)知道,二維球面本質(zhì)上可由單連通性來刻畫,他提出三維球面(四維空間中與原點有單位距離的點的全體)的對應(yīng)問題。這個問題立即變得無比困難,從那時起,數(shù)學(xué)家們就在為此奮斗。
在2002年11月和2003年7月之間,俄羅斯的數(shù)學(xué)家格里戈里·佩雷爾曼在發(fā)表了三篇論文預(yù)印本,并聲稱證明了幾何化猜想。
在佩雷爾曼之后,先后有2組研究者發(fā)表論文補全佩雷爾曼給出的證明中缺少的細(xì)節(jié)。這包括密西根大學(xué)的布魯斯·克萊納和約翰·洛特;哥倫比亞大學(xué)的約翰·摩根和麻省理工學(xué)院的田剛。
2006年8月,第25屆國際數(shù)學(xué)家大會授予佩雷爾曼菲爾茲獎。數(shù)學(xué)界最終確認(rèn)佩雷爾曼的證明解決了龐加萊猜想。
2、NP完全問題
例:在一個周六的晚上,你參加了一個盛大的晚會。由于感到局促不安,你想知道這一大廳中是否有你已經(jīng)認(rèn)識的人。宴會的主人向你提議說,你一定認(rèn)識那位正在甜點盤附近角落的女士羅絲。不費一秒鐘,你就能向那里掃視,并且發(fā)現(xiàn)宴會的主人是正確的。然而,如果沒有這樣的暗示,你就必須環(huán)顧整個大廳,一個個地審視每一個人,看是否有你認(rèn)識的人。
生成問題的一個解通常比驗證一個給定的解時間花費要多得多。這是這種一般現(xiàn)象的一個例子。與此類似的是,如果某人告訴你,數(shù)13717421可以寫成兩個較小的數(shù)的乘積,你可能不知道是否應(yīng)該相信他,但是如果他告訴你它可以分解為3607乘上3803,那么你就可以用一個袖珍計算器容易驗證這是對的。
人們發(fā)現(xiàn),所有的完全多項式非確定性問題,都可以轉(zhuǎn)換為一類叫做滿足性問題的邏輯運算問題。既然這類問題的所有可能答案,都可以在多項式時間內(nèi)計算,人們于是就猜想,是否這類問題,存在一個確定性算法,可以在多項式時間內(nèi),直接算出或是搜尋出正確的答案呢?這就是著名的NP=P?的猜想。不管我們編寫程序是否靈巧,判定一個答案是可以很快利用內(nèi)部知識來驗證,還是沒有這樣的提示而需要花費大量時間來求解,被看作邏輯和計算機(jī)科學(xué)中最突出的問題之一。它是斯蒂文·考克于1971年陳述的。
3、楊-米爾斯存在性和質(zhì)量缺口
量子物理的定律是以經(jīng)典力學(xué)的牛頓定律對宏觀世界的方式對基本粒子世界成立的。大約半個世紀(jì)以前,楊振寧和米爾斯發(fā)現(xiàn),量子物理揭示了在基本粒子物理與幾何對象的數(shù)學(xué)之間的令人注目的關(guān)系;跅-米爾斯方程的預(yù)言已經(jīng)在如下的全世界范圍內(nèi)的實驗室中所履行的高能實驗中得到證實:布羅克哈文、斯坦福、歐洲粒子物理研究所和駐波。盡管如此,他們的既描述重粒子、又在數(shù)學(xué)上嚴(yán)格的方程沒有已知的解。特別是,被大多數(shù)物理學(xué)家所確認(rèn)、并且在他們的對于“夸克”的不可見性的解釋中應(yīng)用的“質(zhì)量缺口”假設(shè),從來沒有得到一個數(shù)學(xué)上令人滿意的證實。在這一問題上的進(jìn)展需要在物理上和數(shù)學(xué)上兩方面引進(jìn)根本上的新觀念。
4、霍奇猜想
二十世紀(jì)的數(shù)學(xué)家們發(fā)現(xiàn)了研究復(fù)雜對象的形狀的強(qiáng)有力的辦法;鞠敕ㄊ菃栐谠鯓拥某潭壬希覀兛梢园呀o定對象的形狀通過把維數(shù)不斷增加的簡單幾何營造塊粘合在一起來形成。這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導(dǎo)致一些強(qiáng)有力的工具,使數(shù)學(xué)家在對他們研究中所遇到的形形色色的對象進(jìn)行分類時取得巨大的進(jìn)展。不幸的是,在這一推廣中,程序的幾何出發(fā)點變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件;羝娌孪霐嘌,對于所謂射影代數(shù)簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數(shù)閉鏈的幾何部件的(有理線性)組合。
5、納衛(wèi)爾-斯托可方程的存在性與光滑性
起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現(xiàn)代噴氣式飛機(jī)的飛行。數(shù)學(xué)家和物理學(xué)家深信,無論是微風(fēng)還是湍流,都可以通過理解納維葉-斯托克斯方程的解,來對它們進(jìn)行解釋和預(yù)言。雖然這些方程是19世紀(jì)寫下的,我們對它們的理解仍然極少。挑戰(zhàn)在于對數(shù)學(xué)理論作出實質(zhì)性的進(jìn)展,使我們能解開隱藏在納維葉-斯托克斯方程中的奧秘。
6、BSD猜想
數(shù)學(xué)家總是被諸如 那樣的代數(shù)方程的所有整數(shù)解的刻畫問題著迷。歐幾里德曾經(jīng)對這一方程給出完全的解答,但是對于更為復(fù)雜的方程,這就變得極為困難。事實上,正如馬蒂雅謝維奇指出,希爾伯特第十問題是不可解的,即,不存在一般的方法來確定這樣的方程是否有一個整數(shù)解。當(dāng)解是一個阿貝爾簇的點時,貝赫和斯維訥通-戴爾猜想認(rèn)為,有理點的群的大小與一個有關(guān)的蔡塔函數(shù)z(s)在點s=1附近的性態(tài)。特別是,這個有趣的猜想認(rèn)為,如果z(1)等于0,那么存在無限多個有理點(解)。相反,如果z(1)不等于0。那么只存在著有限多個這樣的點。
7、黎曼假設(shè)
有些數(shù)具有不能表示為兩個更小的數(shù)的乘積的特殊性質(zhì),例如,2、3、5、7……等等。這樣的數(shù)稱為素數(shù);它們在純數(shù)學(xué)及其應(yīng)用中都起著重要作用。在所有自然數(shù)中,這種素數(shù)的分布并不遵循任何有規(guī)則的模式;然而,德國數(shù)學(xué)家黎曼(1826~1866)觀察到,素數(shù)的頻率緊密相關(guān)于一個精心構(gòu)造的所謂黎曼zeta函數(shù)ζ(s)的性態(tài)。著名的黎曼假設(shè)斷言,方程ζ(s)=0的所有有意義的解都在一條直線上。這點已經(jīng)對于開始的1,500,000,000個解驗證過。證明它對于每一個有意義的解都成立將為圍繞素數(shù)分布的許多奧秘帶來光明。
黎曼假設(shè)之否認(rèn):
其實雖然因素數(shù)分布而起,但是卻是一個歧途,因為偽素數(shù)及素數(shù)的普遍公式告訴我們,素數(shù)與偽素數(shù)由它們的變量集決定的。具體參見偽素數(shù)及素數(shù)詞條。
結(jié)語:這世界七大數(shù)學(xué)難題既然被承認(rèn)那說明是會有解決的辦法的,如果將其解決,那又會對我們的生活帶來重大的影響。